THE APPROXIMATE REPRESENTATION
OF THE TRANSFORMANT OF A SINGLE REFLECTION

V. L. Lozhkin and Yu. A. Ryzhov UDC 533.6.011.8

An analysis of the general formula for the transformant of a single reflection derived in [1]
is presented. One of the approximations of the general formula most convenient from the
point of view of computer programing is considered. The question of the error character-
izing this approximation is examined, in particular, what conditions have to be satisfied so
as to reduce this error below a certain preassigned value.

The transformant of a single reflection is one of the most important parameters characterizing the
interaction of a rarefied gas with a solid surface [2]. The general formula of the transformant for reflec-
tion from a uniform, anisotropic, differentiable random surface was derived in [1]. However, the directuse
of this formula is impeded by its fairly complicated expression for the probability of an intersectionbetween
the surface and the trajectory of a gas particle:
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Here £(t) is a random function characterizing the surface in the direction t, f t)is a function describ-
ing the trajectory of the gas particle, t; is a fixed point (or moment) on the t axis; £ {ty) and f (ty) are deriva-
tives of the functions £ (t) and f () taken at the instant tg, T is a certain known interval preceding the instant
ty, S(T) is the condition that in the interval T,  (£) <</ (2), o If (2), E (%) | S (7)] isthenominaldensity ofthe
combined distribution of £ (;) and g(to) for a Value of £(ty) =S (t;) and subject to the condition S(T).

In order to bring Eq. (1) to a form convenient for numerical calculations, it is easiest to use the ap-
proximation [1] according to which T is limited by the correlation interval Ty while 8(T) is replaced by the
condition that £ () <f(t) at a finite number of points t; €T, i=1-n. If the points are taken at identical dis-
tances from one another and the first of them coincides with the beginning of the interval T while the final
one coincides with the end of this interval, Eq. (1) may be written in the form
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This form already allows reasonably simple computer programing, either by the expansion of the mul-
tidimensional integrals in convergent series of tetrachoric functions [3] or by means of the Monte Carlo
method [4].

By taking the number n fairly large we might reduce the error arising from the substitution of (2) for
(1) to practically zero, if it were not for the fact that the computing time rises sharply with increasing n.
Hence one of the main problems arising in this connection with this approximation lies in estimating the
minimum number of points required to prevent the error of the approximation
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Ity i=4—n)y—1I(D) (3)

A= T, i=1—n

from exceeding an acceptable value. This paper is devoted to a solution of this problem. In deriving the
formulas here employed, in individual cases we have made use of data obtained from an analysis of profile
recordings of standard samples with surface finishes of classes 6-14 (All-Union State Standard 9378-60).

Let us therefore consider the problem of the minimum number of points, regarding the surface as a
uniform, normal, differentiable random field and using the following terminology [5]. Any intersection of
the particle trajectory f () by the random function £ (t) we shall call an overshoot, If the intersection pro-
ceeds from bottom to top we shall call the overshoot positive, if from top to bottom we shall call it negative.
The distance between neighboring overshoots of different signs we shall call the duration of the overshoot.
If in a specified interval two, three, or more intersections occur, we shall speak of a twofold, threefold, and
so on overshoot in this interval, Furthermore let A be the average number of realizations having a positive
overshoot in the infinitely small interval (ty, t,+dt;) and B be the average number of realizations passing
below the particle trajectory in the same interval, We separate these realizations into three types depend-
ing on the conditions S¢j, i =1-n) and S(T) (Fig. 1):

1) realizations satisfying both conditions (A, B;);
2) realizations satisfying only the first condition (A,, B,);
3) realizations satisfying neither of the conditions (A3, Bj).

Using these forms of nomenclature and also allowing for the fact that the instant t; directly precedes
the instant t), while in an infinitely short interval (t,, t,+dty) the quantities A, A, A,, and A, are infinitely
small compared with B, B,, B,, and B;, we obtain

I, i=1—n)dtj= (4, + A/ (By + By, I(D)dty=A4,/B,
whence
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where
Ay = A,/ (A, + 4,), A, = B,/ By (5)
Let us first estimate the value of A,. It is easy to see that this equals
Ay = pr/ (1 — pr) {6)

where pr is the probability of the appearance of even overshoots in the short intervals At; = (t;_y, t;), i=2~-n
subject to the condition S(t;, i=1-n). Remembering that in such intervals the probability of the appearance
of repeated overshoots falls rapidly as their multiplicity increases, we may in the present case confine our-
selves to considering simple twofold overshoots.

Let us first estimate the probability of the appearance of an overshoot of this kind in the interval At;
subject to the condition [S(t;_{), Sttj)].

Let the overshoot start at the instant 7, and end at the instant T, We denote the unknown probability
by PAtL; and the density by W{r,, 7,); then we have
Aii AL‘i
Pas = S dty S W (ty, 75) d7, (7)
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Further, let
E(w) = & E(w) =&, fl) =rh, @) =/, .f1 = ].¢z = f

Then [5]
o
W (11, &) :S S (Er—f)(f — Ez)p(fh fas Elv Ez)dézdgl ()
f —s

where p(fy, f5, éi, éz) is the density of the combined distribution of the quantities £, oy éI, and éz for values

of &£1=11, £y=/,.

We may show that the quantity W(r, 7,) becomes a maximum if the trajectory of the particleis turned
around a singular point lying at a height of (f; +;)/2 before coincidence with the horizontal level (Fig, 2).
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Enumerating the quantities £, £,, 5 1 and )fz in the order of writing and allowing for the normality of £ (t),
we obtain

o}
1 . o .
W (5, %) = g § (B — DT — Ba)exp [— g (Muf® + Munfid +

F—=
+ Mafi® + My B2 + 2M 5f1fa + 2Mlsf1§1 + 2Mfid, + 2M oty +

+2 Maddibs + 2MsitiBa) | dbads ®

where

din diy dis du

d21 d22 d23 d24

Ao dyy day dyy

dtﬂ. d42 d43 d44

Here d;; are the second central moments of the distribution of the random quantities with numbers i and j;
M;; are the algebraical complements of the elements djj in the determinant M, Let us denote the h.oriz'ontal
level (f4 +f2)/2 by c, the interval 7,—7, by 7, and let us transform to new variables u=¢,—f, v=£,~f.
Then remembering that

M =

My =My, My = Mgy, Moy = —My,, My = —M,

we obtain
W (ty, 7)) = ;m:—M,/;eXP {—— ji} [M33 + My — T(M1a.+ M)+
2 2 (M 12 . (10)
+ My — My)| Jexp [— S EME |, f)
where
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X exp {— %{ [ M3 (u® + V%) + 2M gquv + 2¢ (M3 — My,) (u — u)]}uvdudv
The expression
f2
{— _1}‘7 [M33 Mg — T(Myg+ M)+ %(Mn - M”)]’

under the sign of the exponential in (10) cannot be positive [otherwise for vertical trajectories (f =% ) the
value of W{ry, 7,) would be equal to infinity], Hence

1 2 (Mn L+ M- .
W (ty, T5) gmexp [-—— c—(iM—”)] Fr, ) (12)

Let us find the maximum value of the integral Fir, f‘). Differentiating this with respect to f we obtain
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In Cartesian coordinates the range of integration of the right-hand side of (13) occupies the fourth
quadrant (Fig. 3). Let us divide this in two with the bisectrix OO; and compare the values of the integrand
function at the points A;i@, —b) and A, (b, —a) lying symmetrically with respect to the bisectrix, It is not
difficult to see that the sum of the values at these points vanishes if f=0 and has a constant sign if f =0,
Further remembering that the range of integration in (13) may be represented as a set of points of the form
A, and A,, symmetrical with respect to the bisectrix 0O,, and replacing the actual integration by summa-~
tion with respect to these points, we finally obtain

aF(r,i)z{o, if j=0
a7 +0, # f=0
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TABLE 1 Thus the function F(r, f) has a single extremum with respect to
o - the variable f at zero, It is clear that this is a maximum, otherWLSe
L2 l —om l f oo | A—om we should have one of the conditions
F (1,00 <F (v, ), Fr,0)<<F (v, — o),
1 1 1 1 1
% g 192) 13 18 Yet both of these are impossible, since F(t, ) =F(t, =) =
4 36 26 7 13 and for any finite value of f the quantity F(t, f) > 0.
5 4 |- 33 21 16
f73 22 Z‘g %g %g The foregoing arguments enable us to write inequality (13) thus:
8 73 52 34 25 2 e
W (3,7, _— _ M-+ M) - 2o S
o) % | &1 B & (%) < e | | FE0=] § bbete b dgag,

(14
Q.E.D.

The integral at the end of Eq. (14) may be found by using [5]. After certain transformations we obtain

o0
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°r 6=k@©0), R=R@ =Fk@{/k(©O)

where k(r) is the correlation function of £ ), and

roe Mz b= 662 (M13 — M) (1—1?2)‘/2’

Mss ’ Msz — M3y Mas
@ (r, by = (r + ) E(r, h)+“_"rf_exp<_.1h_jr)‘ V2 exp( 2>[1~<D(a)],,

E(rih) = T r2)‘/2 Sgexp — %(y%:r_i’)"’}!_] dzdy,
a:h(i;‘_:)%’ D (a) = V%Sexp(—%)dx

We note that the error A, will only be small (and it is this case which is of practical interest) if
the intervals Atj are correspondingly small. In any such interval the quantity R{r) may be expanded in a
Maclaurin series:

S| e Ryew — ZR @) (16)

R (T) = (2 )1 v, Fon o

and limited to the first few terms, Remembermg furthermore that (r;, ;) € A; and also allowing for (14),
(15) and the general Rice formula for the average number of zeroes of the derivative dP% (t)/dt® in unit
length [6]

No=+ ____i(»;:) - (17)
we easily find |
W (ty, 7a) =S [<7"V’—0>2 —1] vexp [~ %(%)2] ¥ (1, by (18)
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where

VU= (B — O — e (— ), h=2[(Rf—1] "

Vaa T s
Subsequent substitution of (18) into (7) leads to the inequality ‘ ‘
pa, s X [(Fe) —1] ateexp [ _;—(%ﬂ ¥ (1, k) (19)

It may be shown that this inequality remains valid not only for small values of At; but also quite gen-
erally for any values. In addition to this, it follows from an analysis of the profile recordings that for real
surfaces Ny/N;=1,5. We may here easily convince ourselves that the right-hand side of inequality (19)
reaches its maximum value at the middle level of the surface (¢c=0), whence finally we obtain

o 02 () 1] e

We remember that p At, is the probability of the appearance of a twofold overshoot in a single inter-
val At; subject to the condition [S(tj-,), S(ti)]. If we replace this condition by S{tj i=1-n> 2), analysis of the
profile recordings shows that the value of pAt, becomes somewhat smaller, Allowing for this characteris-
tic and also the earlier arguments regarding even overshoots (on page 683), and using pAt; to denote the
probability of the appearance of such overshoots in a single interval At subject to the condition S, i =1-n),
we shall have

2No? Nib
T =

Let us consider the case in which the probability pat,r is so low that the mean number of correspond-
ing overshoots in the correlation interval Nr is much smaller than unity, Then these overshoots may be
regarded as independent and their appearance described by the Poisson law [7]. For the probability pr we
here obtain

pr=1—exp (— Nr) < Nr < pur Ty [ Aty (22)

If the surface is normal, then according to [8] Tk ~2/ N, and Eqs. (21), (22), and (6) lead to the follow~
ing result:

Nr (FUNoA)? [(N1 | No)2 — 1]
MR Fowr SIS mhA (V2] Noff —1] 23)

We note that the expression so found will only give a comparatively genuine estimate of A, under
the condition Nr<1(or 4,<0.02), Otherwise it leads-to a severe overestimate of the error in question, and
then it may be considered simply as an upper limit beyond which the error cannot under any circumstances
pass.

Let us now return to the error Ay. This is equal to the probability pr subject to the condition of a
positive overshoot at the instant t,. It is analytically difficult to estimate the effect of this condition. How-
ever, direct analysis of the profile recordings shows that this leads to a certain reduction in the probability
under consideration and correspondingly to the inequalities

Ai<<p,, A<, (24)
Thus on the basis of (4), (23), and (24) we obtain the following estimate of the number of points t;€T
sufficient for the error of approximation (2) to fall below A :

n>1ra g () 1) @)

The values of n calculated from Eq, (25) are shown in Table 1. Tt should nevertheless be emphasized
that these values were calculated for the most unfavorable (in the sense of the value of n) trajectories of
the molecules and in any specific cases may be considerably reduced [1].
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